MEMORY Consumer FCRAM ${ }^{\text {TM }}$ cmos

512M Bit (4 bank x 2M word x 64 bit) Consumer Applications Specific Memory for SiP

MB81EDS516545

DESCRIPTION

The Fujitsu MB81EDS516545 is a CMOS Fast Cycle Random Access Memory (FCRAM*) with Low Power Double Data Rate (LPDDR) SDRAM Interface containing 536, 870, 912 storages accessible in a 64 -bit format.
MB81EDS516545 is suited for consumer application requiring high data band width with low power consumption.

* : FCRAM is a trademark of Fujitsu Semiconductor Limited, Japan

FEATURES

- 2 M word . 64 bit . 4 banks organization
- DDR Burst Read/Write Access Capability $-t \mathrm{ck}=4.6 \mathrm{~ns} \operatorname{Min} / 216 \mathrm{MHz} \operatorname{Max}\left(\mathrm{Tj}+105^{\circ} \mathrm{C}\right)$ $-t c k=5 \mathrm{~ns} \operatorname{Min} / 200 \mathrm{MHz} \operatorname{Max}\left(\mathrm{Tj}+125{ }^{\circ} \mathrm{C}\right)$
- Low Voltage Power Supply: $V_{D D}=V_{D D Q}+1.7 \mathrm{~V}$ to +1.9 V
- Junction Temperature: $\quad \mathrm{T}_{\mathrm{J}}=10^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- 1.8 V -CMOS compatible inputs
- Unidirectional READ Data Strobe per 2 byte
- Unidirectional WRITE Data Strobe per 2 byte
- Burst Length: 2, 4, 8, 16
- CAS latency: 2, 3, 4
- Clock Stop capability during idle periods
- Auto Precharge option for each burst access
- Configurable Driver Strength and Pre Driver Strength
- Auto Refresh and Self Refresh Modes
- Deep Power Down Mode
- Low Power Consumption -Idd4R =330 mA Max @ 3.46 GByte/s -ldodw =380 mA Max @ 3.46 GByte/s
- 8 K refresh cycles $/ 16.7 \mathrm{~ms}\left(\mathrm{Tj}+125^{\circ} \mathrm{C}\right)$

MB81EDS516545

(Continued)

- Optional commands and features
-Multi Bank Active (MACT)
-Multi Bank Precharge (MPRE)
-Background Refresh (BREF)
-Additional RDQS Toggle (ART)

PIN DESCRIPTIONS

Symbol	Type	Function		
CK, $\overline{\text { CK }}$	Input	Clock		
CKE	Input	Clock Enable		
$\overline{\text { CS }}$	Input	Chip Select		
RAS	Input	Row Address Strobe		
CAS	Input	Column Address Strobe		
$\overline{\mathrm{WE}}$	Input	Write Enable		
BA[1:0]	Input	Bank Address Inputs		
A[12:0]	Input	Address Inputs	Row	A0 to A12
			Column	A0 to A7
AP(A10)	Input	Auto Precharge Enable		
DM[7:0] *1	Input	Input Data Mask Enable		
DQ[63:0] ${ }^{* 1, * 2}$	I/O	Data Bus Input / Output		
RDQS[3:0] *2	Output	Read Data Strobe		
WDQS[3:0] *2	Input	Write Data Strobe		
SA *3	Input	Select Area Enable		
$V_{\text {DDO }}$, $\mathrm{V}_{\text {d }}$	Supply	Power Supply		
Vssa, Vss	Supply	Ground		

*1 : DM0, DM1, DM2, DM3, DM4, DM5, DM6 and DM7 correspond to DQ[7:0], DQ[15:8], DQ[23:16], DQ[31:24], DQ[39:32], DQ[47:40], DQ[55:48] and DQ[63:56].
*2 : Unidirectional data strobe per 2 byte. RDQS0/WDQS0, RDQS1/WDQS1, RDQS2/WDQS2 and RDQS3/ WDQS3 correspond to DQ[15:0], DQ[31:16], DQ[47:32] and DQ[63:48].
*3 : SA can be tied to Vss if the optional commands, MULTI BANK ACTIVE (MACT), MULTI BANK PRECHARGE (MPRE) and BACKGROUND REFRESH (BREF), are not required.

MB81EDS516545

6. Address Inputs (AO to A12)

Address input selects an arbitrary location of a total of $2,097,152$ words of each memory cell matrix. Total 21 address input signals are required to decode such a matrix. Row Address (RA) is input from A0 to A12 and Column Address (CA) is input from A0 to A7. Row addresses are latched with ACTIVE (ACT or MACT) commands, and Column addresses and Auto Precharge (AP) bit are latched with Read (READ or READA) or Write command (WRIT or WRITA).

Command and address inputs setup and hold time

7. Input Data Mask (DMO to DM7)

DM is an input mask signal for write data. Input data is masked when DM is sampled High on the both edges of WDQS along with input data. DM0, DM1, DM2, DM3, DM4, DM5, DM6 and DM7 correspond to DQ[7:0], DQ[15:8], DQ[23:16], DQ[31:24], DQ[39:32], DQ[47:40], DQ[55:48] and DQ[63:56] respectively. Refer to the "DQ/RDQS/WDQS/DM Correspondence Table".
8. Data Bus Input / Output (DQ0 to DQ63)

DQ is data bus input / output signal.

9. Read Data Strobe (RDQS0 to RDQS3)

RDQS is output signal transmitted by memory during read operation. RDQS is edge aligned with output data. RDQS0, RDQS1, RDQS2 and RDQS3 correspond to DQ[15:0], DQ[31:16], DQ[47:32] and DQ[63:48] respectively. Refer to the "DQ/RDQS/WDQS/DM Correspondence Table".
After stable power supply, RDQS outputs Low.

MB81EDS516545

BLOCK DIAGRAM

MB81EDS516545

SIMPLIFIED STATE DIAGRAM

Note: " SIMPLIFIED STATE DIAGRAM" is based on the single bank operation.
State transition of multi bank operation are not described in all detail.

MB81EDS516545

Mode Register Table

Mode Register

$B A_{1}$	BA 0	A_{12}	A_{11}	A_{10}	A9	A_{8}	A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	Ao	ADDRESS
0	0	0	0	0	0	0	0		CL		0		BL		Mode Register
					A_{6}	A_{5}	A_{4}	CAS Latency				A_{2}	A_{1}	A 0	Burst Length
					0	0	0	Reserved				0	0	0	Reserved
					0	0	1	Reserved				0	0	1	2
					0	1	0	2				0	1	0	4
					0	1	1	3				0	1	1	8
					1	0	0	4				1	0	0	16
					1	0	1	Reserved				1	0	1	Reserved
					1	1	0	Reserved				1	1	0	Reserved
					1	1	1	Reserved				1	1	1	Reserved

Extended Mode Register (1)

Extended Mode Register (2)

BA_{1}	BA_{0}	$\mathrm{~A}_{12}$	$\mathrm{~A}_{11}$	$\mathrm{~A}_{10}$	$\mathrm{~A}_{9}$	$\mathrm{~A}_{8}$	$\mathrm{~A}_{7}$	$\mathrm{~A}_{6}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{0}$	ADDRESS
1	0	0	0	0	0	0	0	0	0	0	0	ART		Extended Mode Register (2)	

A_{2}	$\mathrm{~A}_{1}$	$\mathrm{~A}_{0}$	Additional RDQS Toggle
0	0	0	0 Clock
0	0	1	1 Clock
0	1	0	2 Clock
0	1	1	3 Clock

MB81EDS516545

3. Burst Length (BL)

Burst Length (BL) is the number of word to be read or write as the result of a single READ or WRITE command. It can be set on $2,4,8,16$ words boundary through Mode Register. The burst type is sequential that is incremental decoding scheme within a boundary address to be determined by burst length. Device internal address counter assigns +1 to the previous address until reaching the end of boundary address and then wrap round to least significant address ($=0$).

Burst Length	Starting Column Address				Burst Address Sequence (Hexadecimal)
	A_{3}	A_{2}	A_{1}	A 0	
2	X	X	X	0	0-1
	X	X	X	1	1-0
4	X	X	0	0	0-1-2-3
	X	X	0	1	1-2-3-0
	X	X	1	0	2-3-0-1
	X	X	1	1	3-0-1-2
8	X	0	0	0	0-1-2-3-4-5-6-7
	X	0	0	1	1-2-3-4-5-6-7-0
	X	0	1	0	2-3-4-5-6-7-0-1
	X	0	1	1	3-4-5-6-7-0-1-2
	X	1	0	0	4-5-6-7-0-1-2-3
	X	1	0	1	5-6-7-0-1-2-3-4
	X	1	1	0	6-7-0-1-2-3-4-5
	X	1	1	1	7-0-1-2-3-4-5-6
16	0	0	0	0	0-1-2-3-4-5-6-7-8-9-A-B-C-D-E-F
	0	0	0	1	1-2-3-4-5-6-7-8-9-A-B-C-D-E-F-0
	0	0	1	0	2-3-4-5-6-7-8-9-A-B-C-D-E-F-0-1
	0	0	1	1	3-4-5-6-7-8-9-A-B-C-D-E-F-0-1-2
	0	1	0	0	4-5-6-7-8-9-A-B-C-D-E-F-0-1-2-3
	0	1	0	1	5-6-7-8-9-A-B-C-D-E-F-0-1-2-3-4
	0	1	1	0	6-7-8-9-A-B-C-D-E-F-0-1-2-3-4-5
	0	1	1	1	7-8-9-A-B-C-D-E-F-0-1-2-3-4-5-6
	1	0	0	0	8-9-A-B-C-D-E-F-0-1-2-3-4-5-6-7
	1	0	0	1	9-A-B-C-D-E-F-0-1-2-3-4-5-6-7-8
	1	0	1	0	A-B-C-D-E-F-0-1-2-3-4-5-6-7-8-9
	1	0	1	1	B-C-D-E-F-0-1-2-3-4-5-6-7-8-9-A
	1	1	0	0	C-D-E-F-0-1-2-3-4-5-6-7-8-9-A-B
	1	1	0	1	D-E-F-0-1-2-3-4-5-6-7-8-9-A-B-C
	1	1	1	0	E-F-0-1-2-3-4-5-6-7-8-9-A-B-C-D
	1	1	1	1	F-0-1-2-3-4-5-6-7-8-9-A-B-C-D-E

MB81EDS516545

4. CAS Latency (CL)

CAS Latency (CL) is the delay between READ command being registered and first read data becoming available during read operation. First read data will be valid after (CL-1) • tck + t_{Ac} from the CK rising edge where Read command being latched.

5. Driver Strength (DS)

Driver Strength (DS) is to adjust the driver strength of data output.

6. Pre Driver Strength (PDS)

Pre Driver Strength (PDS) is to adjust the transition time of the data output without changing the output driver impedance.

7. Additional RDQS Toggle (ART)

Additional RDQS Toggle (ART) is to set RDQS toggle count after the last pair of data output. Total RDQS toggle count is BL/2 + ART.

RDQS Timing with Additional RDQS Toggle (ART) function @BL=4

MB81EDS516545

2) CKE Command Truth Table

Command	Symbol	CKE		$\overline{\mathbf{C S}}$	$\overline{\text { RAS }}$	$\overline{\text { CAS }}$	WE	BA	A [12:0]	SA
		n-1	n							
SELF REFRESH ENTRY*1	SELF	H	L	L	L	L	H	x	x	L
SELF REFRESH EXIT *2	SELFX	L	H	L	H	H	H	X	X	
				H	X	X	X	X	X	
POWER DOWN ENTRY *1	PD	H	L	L	H	H	H	X	X	
				H	X	X	X	X	X	
POWER DOWN EXIT	PDX	L	H	L	H	H	H	X	X	
				H	X	X	X	X	X	
DEEP POWER DOWN ENTRY *1	DPD	H	L	L	H	H	L	X	X	
DEEP POWER DOWN EXIT	DPDX	L	H	L	H	H	H	X	X	
				H	X	X	X	X	X	

Note: $\mathrm{V}=$ Valid, $\mathrm{L}=\mathrm{V}_{\mathrm{IL}}, \mathrm{H}=\mathrm{V}_{\mathrm{IH}}, \mathrm{X}$ can be either V_{IL} or V_{H}
*1: SELF and DPD commands can be issued after all banks have been precharged and all DQ are in High-Z.
*2: CKE should be held high more than trefc period after SELFX.

MB81EDS516545

Current State	CS	RAS	CAS	WE	Address	Command	Function
Write Recovering	H	X	X	X	X	DESL	NOP
	L	H	H	H	X	NOP	
	L	H	H	L	X	BST	
	L	H	L	H	BA, CA, AP	READ/READA	Illegal
	L	H	L	L	BA, CA, AP	WRIT/WRITA	Start Write; Determine AP
	L	L	H	H	BA, RA	ACT/MACT	Illegal *1
	L	L	H	L	BA, AP	PRE/PALL/ MPRE	
	L	L	L	H	X	REF/BREF	Illegal
	L	L	L	L	MODE	MRS	
Precharging	H	X	X	X	X	DESL	NOP
	L	H	H	H	X	NOP	
	L	H	H	L	X	BST	Illegal
	L	H	L	H	BA, CA, AP	READ/READA	Illegal *1
	L	H	L	L	BA, CA, AP	WRIT/WRITA	
	L	L	H	H	BA, RA	ACT/MACT	
	L	L	H	L	BA, AP	PRE/PALL/ MPRE	NOP *2
	L	L	L	H	X	REF/BREF	Illegal
	L	L	L	L	MODE	MRS	

(Continued)
(Continued)

Current State	CS	RAS	CAS	WE	Address	Command	Function
Bank Activating	H	X	X	X	X	DESL	NOP
	L	H	H	H	X	NOP	
	L	H	H	L	X	BST	Illegal*2
	L	H	L	H	BA, CA, AP	READ/READA	
	L	H	L	L	BA, CA, AP	WRIT/WRITA	
	L	L	H	H	BA, RA	ACT/MACT	
	L	L	H	L	BA, AP	PRE/PALL/ MPRE	
	L	L	L	H	X	REF/SELF/BREF	Illegal
	L	L	L	L	MODE	MRS	
Refreshing/ Mode Register Setting	H	X	X	X	X	DESL	NOP
	L	H	H	H	X	NOP	
	L	H	H	L	X	BST	Illegal
	L	H	L	X	X	READ/READA/ WRIT/WRITA	
	L	L	X	X	X	ACT/MACT/PRE/ PALL/MPRE/ REF/SELF/ BREF/MRS	

RA = Row Address
BA = Bank Address
CA = Column Address
AP = Auto Precharge
Note: Assuming CKE = H during the previous clock cycle and the current clock cycle. After illegal commands are asserted, following command and stored data should not be guaranteed.
*1: Illegal to bank in the specified state. Command entry may be legal depending on the state of bank selected by BA.
*2: NOP to bank in precharging or in idle state. Bank in active state may be precharged depending on BA.
*3: llegal if any bank is not idle.
*4: MRS command should be issued on condition that all DQ are in High-Z.
*5: Requires appropriate DM masking.

MB81EDS516545

Minimum clock latency or delay time for multi bank operation

: illegal
*1: Assume other bank is in IDLE state.
*2: Assume output is in High-Z state.
*3: Assume trro is satisfied.
*4: Assume tras is satisfied.
*5: Assume appropriate DM masking.
*6: 1st read or write access must be allowed for appropriate bank specified in the ACT and MACT commands of " COMMAND TRUTH TABLE".
*7: BREFX command can be issued only when Background Refresh is in progress.

MB81EDS516545

COMMAND DESCRIPTION

1. DESELECT (DESL)

When $\overline{\mathrm{CS}}$ is High at the CK rising edge, all input signals are neglected. Internal operation such as burst cycle is held.

2. NO OPERATION (NOP)

NOP disables address and data input and internal operation such as burst cycle is held.

3. BANK ACTIVE (ACT)

ACT activates the bank selected by BA and latch the row address through A0 to A12.

4. READ (READ)

READ initiates burst read operation to an activated row address. Address inputs of $A[7: 0]$ determine starting column address and A10 determines whether Auto Precharge is used or not. Initially RDQS output Low level then start toggling together with data output with respect to CL and BL. The read data output is edge-aligned with first rising edge of RDQS and successive read data output are edge-aligned to the successive edge of RDQS. The CK drives the rising edge of RDQS and Even data, and the $\overline{C K}$ drives the falling edge of RDQS and Odd data.

MB81EDS516545

5. READ with Auto Precharge (READA)

READA commands can be issued by READ command with AP $(\mathrm{A} 10)=\mathrm{H}$. Auto precharge is a feature which precharge the activated bank after the completion of burst read operation. The tras is defined from between ACTIVE (ACT) command to the internal precharge which starts after BL/2 from READA command. READ with Auto precharge operation should not be interrupted by subsequent READ, READA, WRITE, WRITEA commands. Next ACTIVE (ACT) command can be issued after BL/2 + trp after READA command.

MB81EDS516545

6. WRITE (WRIT)

WRIT initiates burst write operation to an active row address. Address inputs of $\mathrm{A}[7: 0]$ determine starting column address and $\operatorname{AP}(\mathrm{A} 10)$ determines whether Auto Precharge is used or not. WDQS input must be provided in order to latch the input data. WDQS must be brought to Low to satisfy the specified time duration of the Write Preamble Setup Time to CK (twpres). Input data window must be guaranteed with specified minimum setup and hold time against edge of WDQS input (tos, tor). The input data appearing on DQ is written into memory cell array subject to the DM input logic level appearing coincident with the input data. If a given signal on DM is registered Low, the corresponding data will be written into the cell array. And if a given signal on DM is registered High, the corresponding data will be masked and write will not be executed to that byte. After data input with respect to $B L$ is completed, WDQS must be kept low for the specified minimum value of Write Postamble Time (twpst).

MB81EDS516545

7. WRITE with Auto Precharge (WRITA)

WRITA commands can be issued by WRIT command with AP $(\mathrm{A} 10)=\mathrm{H}$. Auto precharge is a feature which precharge the activated bank after the completion of burst write operation. The tras is defined from between ACTIVE (ACT) command to the internal precharge which starts after $1+\mathrm{BL} / 2+$ twr from WRITA command. WRIT with Auto precharge operation should not be interrupted by subsequent READ, READA, WRIT, WRITA commands. Next ACTIVE (ACT) command can be issued after $1+\mathrm{BL} / 2+$ tDAL after WRITA command.

8. BURST TERMINATE (BST)

BST terminates the burst read or write operation. When a burst read is terminated by BST command, the data output will be in High-Z after CAS latency from the BST command. When a burst write is terminated by BST command, the data input after 1 clock from BST command will be masked.

Terminate read by BST @ CL=3

Terminate write by BST

MB81EDS516545

9. PRECHARGE SINGLE BANK (PRE)

PRECHARGE SINGLE BANK (PRE) command starts precharge operation for a bank selected by BA. A selected bank will be in IDLE state after specified time duration of trp from PRE command. A10 determines whether one or all banks are precharged. If $\mathrm{AP}(\mathrm{A} 10)=L$, a bank to be selected by BA is precharged.

10. PRECHARGE ALL BANK (PALL)

PRECHARGE ALL BANKS (PALL) command starts precharge operation for all banks. All banks will be in IDLE state after specified time duration of trp from PALL command. A10 determines whether one or all banks are precharged. If $\mathrm{AP}(\mathrm{A} 10)=\mathrm{H}$, all banks are precharged and BA input is a "don't care".

11. AUTO REFRESH (REF)

AUTO REFRESH (REF) command starts internal refresh operation which uses the internal refresh address counter. All banks must be precharged prior to the Auto-refresh command. Data retention capability depends on the Junction Temperature (Tj). Total 8,192 AUTO REFRESH (REF) commands must be asserted within the following refresh period of trer.

Tj Max (${ }^{\circ} \mathbf{C}$)	tref (ms)
+105	64
+125	16.7

12. SELF-REFRESH ENTRY (SELF)

SELF REFRESH ENTRY (SELF) commands can be issued by AUTO REFRESH (REF) command in conjunction with CKE = Low after last read data has been appeared on DQ. During Self Refresh mode, stored data can be retained without external clocking and all inputs except for CKE will be a "don't care". Self refresh mode can be used when Tj is less than $+85^{\circ} \mathrm{C}$. Auto Refresh must be issued to retain data when Tj is greater than $+85^{\circ} \mathrm{C}$.

13. SELF-REFRESH EXIT (SELFX)

To exit self-refresh mode, apply minimum tis after CKE brought High, and then the NO OPERATION command (NOP) or the DESELECT command (DESL) should be asserted within one trefc period. CKE should be held High within one trefc period after tis. Refer to the "(15) Self Refresh Entry and Exit" in " TIMING DIAGRAMS" for the detail. It is recommended to assert an Auto-refresh command just after the trefc period to avoid the violation of refresh period.

14. MODE REGISTER SET (MRS)

MODE REGISTER SET (MRS) commands to program the mode registers. Once a mode register is programmed, the contents of the register will be held until re-programmed by another MRS command. MRS command should only be issued on conditions that all DQs are in High-Z and all banks are in IDLE state. The contents of the mode registers is undefined after the power-up and Deep Power Down Exit. Therefore MRS must be issued to set each content of mode registers after initialization. Refer to the "Power Up Initialization" in " FUNCTIONAL DESCRIPTION".

15. POWER DOWN ENTRY (PD)

POWER DOWN ENTRY (PD) commands to drive the device in Power Down mode and maintains low power state as long as CKE is kept Low. During Power Down state, all inputs signals are a "don't care" except for CKE. Power Down mode must be entered on condition that all DQs are in High-Z.

16. POWER DOWN EXIT (PDX)

POWER DOWN EXIT (PDX) commands to resume the device from Power Down mode. Any commands can be detected 1 clock after PDX commands.

MB81EDS516545

17. DEEP POWER DOWN ENTRY (DPD)

DEEP POWER DOWN ENTRY (DPD) commands to drive the device in Deep Power Down mode which is the lowest power consumption but all stored data and the contents of mode registers will be lost. During Deep Power Down state, all inputs signals except for CKE are a "don't care" and all DQs and RDQS will be in High-Z. Deep Power Down mode must be entered on conditions that all DQs are in High-Z and all banks are in IDLE state.

18. DEEP POWER DOWN EXIT (DPDX)

DEEP POWER DOWN EXIT (DPDX) commands to resume the device from Deep Power Down mode. Power up initialization procedure must be performed after DPDX commands. Refer to the "Power Up Initialization" in " FUNCTIONAL DESCRIPTION".

19. MULTI BANK ACTIVE (MACT)

MULTI BANK ACTIVE (MACT) command activates 2 banks simultaneously selected by BA1. SA must be High to issue MACT command. BA1 determines the target bank group is either Bank 0 \& 1 or Bank 2 \& 3. And BA0 determines the bank where 1st read or write access can be performed. If MACT command is issued to Bank 0 (or Bank 2) with $R A=N$, same Row Address of $R A=N$ is activated for Bank 1 (or Bank 3) and 1st read or write access must be allowed for RA=N of Bank 0 (or Bank 2). If MACT command is issued to Bank 1 (or Bank 3) with RA $=\mathrm{N}$, next Row Address of $\mathrm{RA}=\mathrm{N}+1$ is activated for Bank 0 (or Bank 2) and 1st read or write access must be allowed for RA = N of Bank 1 (or Bank 3). If MACT command is issued to Bank 1 (or Bank 3) with RA = FFFh, internal row address counter is wrap around therefore activated Row Address is FFFh for Bank 1 (or Bank 3) and 000h for Bank 0 (or Bank 2).

Command Truth Table of ACT and MACT

Command	Symbol	SA	BA1	BAO	Row Address A [12:0]	1st access		2nd access	
						Bank	RA	Bank	RA
BANK ACTIVE	ACT	L	L	L	$R A=N$	Bank 0	$\mathrm{RA}=\mathrm{N}$	NA	
			L	H		Bank 1	$\mathrm{RA}=\mathrm{N}$	NA	
			H	L		Bank 2	$\mathrm{RA}=\mathrm{N}$	NA	
			H	H		Bank 3	$\mathrm{RA}=\mathrm{N}$	NA	
MULTI BANK ACTIVE	MACT	H	L	L	$R A=N$	Bank 0	$\mathrm{RA}=\mathrm{N}$	Bank 1	$\mathrm{RA}=\mathrm{N}$
			L	H		Bank 1	$\mathrm{RA}=\mathrm{N}$	Bank 0	$\mathrm{RA}=\mathrm{N}+1$
			H	L		Bank 2	$\mathrm{RA}=\mathrm{N}$	Bank 3	$\mathrm{RA}=\mathrm{N}$
			H	H		Bank 3	$\mathrm{RA}=\mathrm{N}$	Bank 2	$\mathrm{RA}=\mathrm{N}+1$

The following memory map example enables to issue effective MACT command for 2-bank interleave access between Bank 0 and Bank 1 or Bank 2 and Bank 3.

Memory Map Example for 2-bank interleave access by MACT command

Bank	0	1	0	1	0	1	0	1	0	1	0	1	0	1
RA	000h		001h		N-1		N		N+1		FFFh		FFFh	
Bank	2	3	2	3	2	3	2	3	2	3	2	3	2	3
RA	000h		001h		N-1		N		N+1		FFFh		FFFh	

MB81EDS516545

20. MULTI BANK PRECHARGE (MPRE)

MULTI BANK PRECHARGE (MPRE) command starts precharge operation for 2 banks selected by BA1. SA must be High to issue MPRE command. Selected 2 banks will be in IDLE state after specified time duration of trp from MPRE command. BA1 determines whether the target bank group is Bank 0 \& 1 or Bank 2 \& 3. If MPRE command is issued to BA1 = L, Bank 0 and Bank 1 will be precharged simultaneously. If MPRE command is issued to $\mathrm{BA} 1=\mathrm{H}$, Bank 2 and Bank 3 will be precharged simultaneously.

Command Truth Table of PRE, PALL and MPRE

Command	Symbol	CS	RAS	CAS	WE	BA1	BAO	$\begin{aligned} & \hline \text { A10 } \\ & \text { (AP) } \end{aligned}$	$\begin{gathered} A[9: 0], \\ A 19, A 12 \end{gathered}$	SA	Precharged Bank
PRECHARGE SINGLE BANK	PRE	L	L	H	L	L	L	L	X	L	Bank 0
						L	H				Bank 1
						H	L				Bank 2
						H	H				Bank 3
PRECHARGE ALL BANK	PALL					X	X	H			All Banks
MULTI BANK						L					Bank 0 \& 1
PRECHARGE	MPR					H	x	L		H	Bank 2 \& 3

21. BACKGROUND REFRESH ENTRY (BREF)

BACKGROUND REFRESH ENTRY (BREF) command starts internal refresh operation for 2 banks selected by BA1. SA must be High to issue BREF command and A10 determines either BACKGROUND REFRESH ENTRY (BREF) or EXIT (BREFX). 2 banks which will be refreshed must be precharged prior to the BREF command. When BREF command is issued, Refresh Count (RC) must be set through A[9:0] inputs as shown in the following table. RC defines how many refresh cycle is executed by one BREF command. RC can be set from 1 to 31 cycles. Refreshed banks will be in REFRESH state for a period specified by RC xtrefc. While any read and write access must not be performed during AUTO REFRESH which initiates all banks refresh, background refresh can allow to read or write access to 2 banks which are not refreshed. BA1 determines the target bank group either Bank 0 \& 1 or Bank 2 \& 3. If BREF command is issued to BA1 = L, Bank 0 \& 1 will be refreshed and Bank 2 \& 3 can be accessible. If BREF command is issued to BA1 $=\mathrm{H}, \mathrm{Bank} 2$ \& 3 will be refreshed and Bank 0 \& 1 can be accessible. 8,192 BREF command must be asserted to both bank group of Bank $0 \& 1$ and Bank 2 \& 3 within the refresh period of tree. When background refresh is in progress for one bank group, BREF command must not be issue to the other bank group.

22. BACKGROUND REFRESH EXIT (BREFX)

BACKGROUND REFRESH EXIT (BREFX) command terminates internal refresh operation for 2 banks initiated by BREF command for a period of RC xtrefc. SA must be High to issue BREFX command. 2 banks will be IDLE state after trefc from BREFX command. BREFX command can be issued when background refresh is in progress.

MB81EDS516545

Command Truth Table of BREF and BREFX

Command	Symbol	$\overline{\text { CS }}$	$\overline{\text { RAS }}$	$\overline{\text { CAS }}$	WE	BA1	BAO	$\begin{aligned} & \text { A10 } \\ & \text { (AP) } \end{aligned}$	$\begin{array}{\|c\|} \hline \mathbf{A}[9: 0],{ }_{2} \\ \mathbf{A 1 1}, \mathbf{A 1 2} \end{array}$	SA	Refreshed Bank
AUTO REFRESH	REF	L	L	L	H	X	X	X	X	L	All Banks
BACKGROUND REFRESH ENTRY	BREF					L	X	L	$\begin{gathered} V \\ (R C) \end{gathered}$	H	Bank 0 \& 1
						H					Bank 2 \& 3
BACKGROUND REFRESH EXIT	BREFX					X	X	H	X	H	Bank 0 \& 1
											Bank 2 \& 3

MB81EDS516545

Refresh Count (RC) Definition Table

Refresh Count (RC)	A10	$\begin{gathered} \text { A[5:9], } \\ \text { A11, A12 } \end{gathered}$	A4	A3	A2	A1	A0
ILLEGAL*	L	L				L	L
1					L	L	H
2						H	L
3				L			H
4						L	L
5					H		H
6						H	L
7			L				H
8						L	L
9					L		H
10						H	L
11				H			H
12						L	L
13					H		H
14						H	L
15							H
16			H	L	L	L	L
17							H
18						H	L
19							H
20					H	L	L
21							H
22						H	L
23							H
24				H	L	L	L
25							H
26						H	L
27							H
28					H	L	L
29							H
30						H	L
31							H

* $: A[12: 0]=000 \mathrm{~h}$ must not be set for RC.

MB81EDS516545

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
Supply Voltage Relative to V_{ss}	$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DDQ}}$	-0.5 to +2.3	V
Input / Output Voltage Relative to V_{ss}	$\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\text {out }}$	-0.5 to +2.3	V
Short Circuit Output Current	lout	± 50	mA
Power Dissipation	PD^{2}	1.0	W
Storage Temperature	Tsta	-55 to +125	${ }^{\circ} \mathrm{C}$

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min.	Typ.	Max.	Unit
Supply Voltage ${ }^{+1}$	VDD, $\mathrm{V}_{\text {dod }}$	1.7	1.8	1.9	V
	Vss, VssQ	0	0	0	V
DC Input High Voltage ${ }^{2}$	V_{H} (DC)	Vddo - 0.7		Vdda +0.3	V
AC Input High Voltage ${ }^{\text {2 }}$	$\mathrm{V}_{\text {H (}}(\mathrm{AC})$	V $\mathrm{DDQ} \cdot 0.8$		VDDQ +0.3	V
DC Input Low Voltage ${ }^{3}$	VIL(DC)	-0.3		VdDO 0.3	V
AC Input Low Voltage ${ }^{\text {3 }}$	VIL (AC)	-0.3		V ${ }_{\text {dDO }} \cdot 0.2$	V
Junction Temperature	T_{j}	-10		+125	${ }^{\circ} \mathrm{C}$

*1: Vdod must be less than or equal to Vdo.
*2: Maximum DC voltage on input or I / O pins is $\mathrm{V} D \mathrm{DQ}+0.3 \mathrm{~V}$. During voltage transitions, inputs may positive overshoot to $V_{D D Q}+1.0 \mathrm{~V}$ for periods of up to 3 ns .
*3: Minimum DC voltage on input or I/O pins is -0.3 V . During voltage transitions, inputs may negative overshoot to $\mathrm{V}_{\text {sso }}-1.0 \mathrm{~V}$ for periods of up to 3 ns .

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

CAPACITANCE

Parameter	Symbol	Min.	Typ.	Max.	Unit
Input Capacitance, Except for WDQS, DM	Cin 1	1		2.5	pF
Input Capacitance for WDQS, DM	Cin^{2}	2		4	pF
I/O Capacitance	Cıı	2		4	pF

MB81EDS516545

ELECTRICAL CHARACTERISTICS

1. DC Characteristics

(Under recommended operating conditions unless otherwise noted)

Parameter	Symbol	Condition		Value		Unit
				Min.	Max.	
Output High Voltage	Vон(DC)	I о $=-0.1 \mathrm{~mA}$		VDDQ 0.2		V
Output Low Voltage	Vol(DC)	$\mathrm{loL}=0.1 \mathrm{~mA}$			0.2	V
Input Leakage Current	$\mathrm{l} \stackrel{1}{ }$	0 V Vin $\mathrm{V}_{\mathrm{dDa}}$, All other pins not under test $=0 \mathrm{~V}$		5	5	$\propto \mathrm{A}$
Output Leakage Current	ILo	0 V Vin Vdod, Data out disabled		5	5	$\propto \mathrm{A}$
Operating One Bank Active-Precharge Current	Idoo	$\begin{aligned} & \operatorname{trc}=\operatorname{trc} \min , \operatorname{tck}=\operatorname{tck} \min , C K E=V_{H H}, \\ & \mathrm{CS}=\mathrm{V}_{I H} \\ & \text { addresses inputs are SWITCHING; } \\ & \text { data bus inputs are STABLE } \end{aligned}$	$\mathrm{Tj}+105^{\circ} \mathrm{C}$		65	mA
			$\mathrm{Tj}+125^{\circ} \mathrm{C}$		75	mA
Precharge Standby Current	Ido2P	All banks idle, CKE = V L , $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{H}}, \mathrm{tck}=$ tck \min, address and control inputs are SWITCHING; data bus inputs are STABLE	Tj $+105^{\circ} \mathrm{C}$		6	mA
			$\mathrm{Tj}+125^{\circ} \mathrm{C}$		9	
	Idozn	All banks idle, CKE $=\mathrm{V}_{\mathrm{H}}$, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{H}}, \mathrm{tck}=$ tck \min, address and control inputs are SWITCHING; data bus inputs are STABLE	Tj $+105{ }^{\circ} \mathrm{C}$		15	mA
			Tj $+125^{\circ} \mathrm{C}$		20	mA
Operating Burst Read Current	IDD4R	One bank active, $B L=4$, tck = tck min, Output pin open, Gapless data, address inputs are SWITCHING; 50% data change each burst transfer			300	mA
Operating Burst Write Current	IDD4W	One bank active, BL = 4, tck $=$ tck \min, Gapless data, address inputs are SWITCHING; 50% data change each burst transfer			380	mA
Auto Refresh Current	ldo5	$\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\text {trec }} \min , \mathrm{tck}=\mathrm{tck}$ min, $\mathrm{CKE}=\mathrm{V}_{\mathrm{IH}}$, address and control inputs are SWITCHING; data bus inputs are STABLE			120	mA

(Continued)
(Continued)

Parameter	Symbol	Condition	Value		Unit
			Min.	Max.	
Self Refresh Current	Iod6	$\mathrm{CKE}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}},$ address and control inputs are STABLE; data bus inputs are STABLE		6	mA
Deep Power Down Current	Ido8	address and control inputs are STABLE; data bus inputs are STABLE		300	$\propto \mathrm{A}$

Notes: • All voltages are referenced to Vss.

- After power on, initialization following power-up timing is required. DC characteristics are guaranteed after the initialization.
- Iod depends on the output termination or load condition, clock cycle rate, signal clocking rate. The specified values are obtained with the output open condition.

MB81EDS516545

2. AC Characteristics

(Under recommended operating conditions unless otherwise noted) ${ }^{* 1,{ }^{* 2}}$

Parameter			Symbol	Value		Unit	
			Min.	Max.			
DQ Output Access Time from CK/ $\overline{\text { CK }}$ (tck $=$ tck min) ${ }^{* 3, * 4, * 5, * 7}$				tac	2	6	ns
RDQS Output Access Time from CK/ $\overline{\mathrm{CK}}$ *3,*4, ${ }^{\text {a }}$			toasck	2	6	ns	
Clock High Level Width *3			tch	2		ns	
Clock Low Level Width *3			tct	2		ns	
Delay between CK and $\overline{\mathrm{CK}}{ }^{* 4}$			toc	0.45	0.55	tck	
Clock Cycle Time	$\mathrm{CL}=2$		tck	15		ns	
	$\mathrm{CL}=3$			7.4			
	$C L=4$	$\mathrm{Tj}+105^{\circ} \mathrm{C}$		4.6			
		Tj $+125^{\circ} \mathrm{C}$		5			
DQ and DM Input Setup Time*3		Tj $+105^{\circ} \mathrm{C}$	tos	0.4		ns	
		Tj $+125^{\circ} \mathrm{C}$		0.5		ns	
DQ and DM Input Hold Time*3		Tj $+105^{\circ} \mathrm{C}$	toh	0.4		ns	
		Tj $+125^{\circ} \mathrm{C}$		0.5		ns	
DQ and DM Input Pulse Width			tolpw	0.35		tck	
Address and Control Input Setup Time *3			tis	0.9		ns	
Address and Control Input Hold Time *3			tH_{H}	0.9		ns	
Address and Control Input Pulse Width			tipw	0.6		tck	
DQ Low-Z Time from CK/ $\overline{C K}^{* 3, * 5}$			tız	0		ns	
DQ High-Z Time from CK/ $\overline{\mathrm{CK}}^{* 3, * 5, * 6}$			thz		6	ns	
RDQS to DQ Skew *4			toasa		0.4	ns	
DQ Output Hold Time from RDQS *3, *4			toн	toc 0.5		ns	
WRIT Command to 1st WDQS Latching Transition			toass	0.75	1.25	tck	
WDQS Input High Level Width			toash	0.35		tck	
WDQS Input Low Level Width			toasL	0.35		tck	
WDQS Falling Edge to CK Setup Time			toss	0.2		tck	
WDQS Falling Edge Hold Time from CK			tosh	0.2		tck	
MRS Command Period			tmRD	2		tck	
Write Preamble Setup Time			twpres	0		ns	
Write Postamble Time			twpst	1		tck	

(Continued)

MB81EDS516545

(Continued)
(Under recommended operating conditions unless otherwise noted) ${ }^{* 1,{ }^{* 2}}$

Parameter		Symbol	Val		Unit	
		Min.	Max.			
ACT to PRE, MPRE, PALL Command Period*7			tras	37	8000	ns
ACT, MACT to ACT, MACT Command Period (Same Bank)*7		trc	59.2		ns	
REF to ACT, REF Command Period		trefc	100		ns	
ACT to READ or WRIT Command Period		trci	20		ns	
Precharge Period*7		trp	18		ns	
ACT, MACT to ACT, MACT Command Period (Other Bank)*8		trro	9.2		ns	
Write Recovery Time		twr	12		ns	
Data Input to ACT, REF Command Period	$C L=2$	taal	$1 \mathrm{CLK}+\mathrm{trP}$		ns	
	$\mathrm{CL}=3$		$2 \mathrm{CLK}+\mathrm{trp}^{\text {P }}$			
	$\mathrm{CL}=4$		3 CLK + trp			
Internal Write to READ Command Delay		twir	9.2		ns	
Average Refresh Period *9	Tj $\quad+105^{\circ} \mathrm{C}$	trefi		7.8	α	
	$\mathrm{Tj}+125^{\circ} \mathrm{C}$			2.0		
Average Periodic Refresh Interval	Tj $+105^{\circ} \mathrm{C}$	tref		64	ms	
	$\mathrm{Tj}+125^{\circ} \mathrm{C}$			16.7		
Transition Time*10		tt		1	ns	

* 1: AC characteristics are measured after the Power up initialization procedure.
* 2: $\mathrm{V}_{\mathrm{DD}} \cdot 0.5$ is the reference level for $1.8 \mathrm{VI} / \mathrm{O}$ for measuring timing of input/output signals.
* 3: If input signal transition time (t) is longer than 1 ns ; [(tt/2) 0.5$]$ ns should be added to tac (Max), toasck (Max) and thz (max) spec values, [($\mathrm{t} / 2$ /2) 0.5$]$ ns should be subtracted from tzz (Min) and taH (Min) spec values, and

* 4: The data valid window is defined as tan - toaso. The data valid window depends on toc which is defined between rising edge of CK and rising edge of CK. The data valid window is guaranteed when toc is satisfied.
* 5: $t_{A C}$, toasck, $t_{l z}$ and $t_{H z}$, are measured under output load circuit shown in " 3 . Measurement Condition of AC Characteristics" in " ELECRTRICAL CHARACTERISTICS" and Driver Strength (DS) = Normal, Pre Driver Strength (PDS) = Fast are assumed.
* 6: Specified where output buffer is no longer driven.
* 7: The sum of actual clock count of tras and trp must be equal or greater than specified minimum trc.
* 8: trro is applied to ACT (MACT) to BREF, ACT (MACT) to BREFX, BREF to ACT (MACT) and BREFX to ACT (MACT). Refer to the " BANK OPERATION COMMAND TABLE".
* 9: This value is for reference only.
* 10: Transition times are measured between V_{IH} (AC) min and V_{IL} (AC) max.

MB81EDS516545

3. Measurement Condition of AC Characteristics

VDD 0.5 V

VDD •		50
$0.1 \propto F$	DEVICE	
Vss •	UNDER	\bullet
		10 pF

TIMING DIAGRAMS

(1) Read* (Assuming CL = 4, BL = 8)

*: RA = Row Address, BA = Bank Address, CA = Column Address, AP = Auto Precharge

MB81EDS516545

(2) Read to Read*1 (Assuming CL $=4, \mathrm{BL}=8$)

*1: RA = Row Address, BA = Bank Address, CA = Column Address, AP = Auto Precharge
*2: Previous burst read can be interrupted by subsequent burst read.
(3) Read to Precharge *1 (Assuming CL $=4, \mathrm{BL}=8$)

*1: RA = Row Address, $\mathrm{BA}=$ Bank Address, $\mathrm{CA}=$ Column Address, $\mathrm{AP}=$ Auto Precharge
*2: Burst read operation can be terminated by PRE command. All DQ pins become High-Z after CL from PRE command.

MB81EDS516545

(4) Read with Auto-Precharge *1 (Assuming CL = 4, BL = 8)

*1: RA = Row Address, $\mathrm{BA}=$ Bank Address, $\mathrm{CA}=$ Column Address, $\mathrm{AP}=$ Auto Precharge
*2: Internal precharge operation starts after BL/2 from READA command. tras must be satisfied.
*3: Next ACT command can be issued after BL/2 + tRP from READA command. trc must be satisfied.

MB81EDS516545

(8) Read to Write *1 (Assuming CL = 4, BL = 8)

*1: RA = Row Address, BA = Bank Address, CA = Column Address, AP = Auto Precharge
*2 : WRIT command can be issued after CL + BL/2 after READ command.

MB81EDS516545

(10) Write to Read *1 (Assuming CL = 4, BL = 4)

*1: RA = Row Address, BA = Bank Address, CA = Column Address, AP = Auto Precharge
*2 : READ command can be issued after $1+B L / 2+$ twtr from WRIT command.

(15) Self Refresh Entry and Exit *1

*1: RA = Row Address, BA = Bank Address, AP = Auto Precharge
*2 : All banks must be precharged prior to SELF REFRESH ENTRY (SELF) command.
*3 : SELF REFRESH EXIT (SELFX) command can be latched at the CK rising edge.
*4 : Either NOP or DESL command can be used during trefc period.
*5 : CKE should be held High during trefc period after SELFX command.

MB81EDS516545

(16) Mode Register Set*1

*1 : RA = Row Address, BA = Bank Address, AP = Auto Precharge
*2 : MODE REGISTER SET (MRS) command must be asserted after all banks have been precharged and all DQ are in High-Z.
(17) Power Down Entry and Exit *1

*1: RA = Row Address, BA = Bank Address, AP = Auto Precharge
*2 : PD command can be issued after all DQ are in High-Z.
*3 : ACT command can be issued after 1 clock from POWER DOWN EXIT (PDX) command.

(19) Deep Power Down Exit ${ }^{* 1}$

*1: RA = Row Address, BA = Bank Address, $\mathrm{AP}=$ Auto Precharge
*2: Power up initialization procedure must be performed after DPDX command.

MB81EDS516545

MEMO

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan
Tel: +81-45-415-5858
http://jp.fujitsu.com/fsl/en/

For further information please contact:

North and South America

FUJITSU SEMICONDUCTOR AMERICA, INC.
1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://us.fujitsu.com/micro/

Europe

FUJITSU SEMICONDUCTOR EUROPE GmbH
Pittlerstrasse 47, 63225 Langen, Germany
Tel: +49-6103-690-0 Fax: +49-6103-690-122
http://emea.fujitsu.com/semiconductor/

Korea

FUJITSU SEMICONDUCTOR KOREA LTD.
206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111
http://kr.fujitsu.com/fmk/

Asia Pacific
FUJITSU SEMICONDUCTOR ASIA PTE. LTD. 151 Lorong Chuan,
\#05-08 New Tech Park 556741 Singapore
Tel : +65-6281-0770 Fax : +65-6281-0220
http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD. Rm. 3102, Bund Center, No. 222 Yan An Road (E), Shanghai 200002, China
Tel : +86-21-6146-3688 Fax : +86-21-6335-1605
http://cn.fujitsu.com/fmc/

FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel : +852-2377-0226 Fax : +852-2376-3269
http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.
FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of overcurrent levels and other abnormal operating conditions.
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

